GCSE mathematics aims to equip all students with the knowledge, understanding and intellectual capabilities to address further courses in mathematics, as well as to prepare those students who will use mathematics in their studies, workplaces and everyday life. Our delivery of the subject reflects our ambitious intent for students. Lessons should show clear progression, making links to global contexts whenever possible and connecting new knowledge to existing knowledge. Lessons consist of retrieval of previous content taught, teacher explanations of concepts, opportunities to practise applying knowledge and challenging extended tasks. Practical work is used whenever appropriate to extend students’ knowledge and enhance their practical skills.
Year 11 students will be assessed regularly using short tests, previous exam papers and homework. At the end of module 1 and 3 they will do the proper Pre-public exam in the exam conditions being assessed with all three exam papers (paper 1 – non-calculator, paper 2 and 3 calculator) with each paper worth ⅓ of their grade. The papers are split in two tiers, Higher (3 – 9 grades) and Foundation (1 – 5 grades).
Classwork will also prepare KS4 pupils for the three assessment strands that are covered in the formal exams:
- AO1: Use and apply standard techniques
Involves the completion of exam-style assessments that are cumulative in nature. In addition to this, teachers will assess students’ knowledge through various mini tests/homework tasks/quizzes. Students need to accurately recall facts, terminology and definitions
- AO2: Reason, interpret and communicate mathematically
It requires students to make deductions, inferences, and draw conclusions from mathematical information, interpret and communicate information accurately, present arguments and proofs, assess and evaluate given arguments.
- AO3: Solve problems and within mathematics and other contexts
It requires students to translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes; to make and use connections between different parts of mathematics; to interpret results in the context of the given problem; to evaluate methods used and results obtained; to evaluate solutions to identify how they may have been affected by assumptions made.